How to turn contents of a .txt file into a .g1m
1 post
• Page 1 of 1
- Stavros Purdie
- Junior Member
- Posts: 1
- Joined: Fri Oct 08, 2021 11:55 pm
- Calculators: Casio fx-9750GII (SH4), Casio fx-9860GII
How to turn contents of a .txt file into a .g1m
Hi everyone.
I found this project https://community.casiocalc.org/topic/7071-program-for-fx-9860gii-to-locate-comets-or-planets-in-the-sky/ (unfortunatly all of the google drive links are down) and I wanted to know how to turn the code show at the top of the forum into a .g1m file
all my attempts have failed and I would like to know of a solution.
BELOW IS THE CODE
"2014.0106, 12:00:00"âStr 1â”
{-4693.4,1.0000026666,61.7852,295.7508,345.5009,2456625.3147}âList 1â”
Exp(StrLeft(Str 1,4))âYâ”
Exp(StrMid(Str 1,6,2))âMâ”
Exp(StrMid(Str 1,8,2))âDâ”
Exp(StrMid(Str 1,12,2))+Exp(StrMid(Str 1,15,2))Ă·60+Exp(StrMid(Str 1,18,2))Ă·3600âTâ”
Int ((Mâ14)Ă·12)âAâ”
Int ((1461(Y+4800+A))Ă·4)âBâ”
Int ((367(Mâ2â12A))Ă·12)âCâ”
Int ((Y+4900+A)Ă·100)âEâ”
Int ((3E)Ă·4)âFâ”
B+CâF+Dâ32075.5âJâ”
J+TĂ·24âTž
If List 1[1]=0 Or List 1[2]â€0 Or List 1[2]=1:Then Stop:IfEndâ”
If List 1[1]>0 And List 1[2]>1:Then Stop:IfEndâ”
If List 1[1]<0 And List 1[2]<1:Then Stop:IfEndâ”
(ÏĂ·180)List 1[3]âList 1[3]â”
(ÏĂ·180)List 1[4]âList 1[4]â”
(ÏĂ·180)List 1[5]âList 1[5]â”
If List 1[1]>0:Then Goto 2:IfEndâ”
1.32712440018áŽ20âGâ”
1.49597870691áŽ11âOâ”
86400â(GĂ·(-OList 1[1])^3)âMâ”
M(TâList 1[6])âMâ”
0âUâ”
1âVâ”
While Abs (VâU)>1áŽ-12â”
UâVâ”
List 1[2]sinh VâVâMâFâ”
List 1[2]cosh Vâ1âGâ”
List 1[2]sinh VâHâ”
List 1[2]cosh VâIâ”
-FĂ·GâAâ”
-FĂ·(G+AHĂ·2)âBâ”
-FĂ·(G+AHĂ·2+BÂČIĂ·6)âCâ”
V+CâUâ”
WhileEndâ”
cosâ»Âč ((List 1[2]âcosh U)Ă·(List 1[2]cosh Uâ1))âFâ”
If U<0:Then 2ÏâFâF:IfEndâ”
List 1[1](1âList 1[2]cosh U)âRž
Rcos FâList 2[1]â”
Rsin FâList 2[2]â”
List 2[1]cos List 1[5]âList 2[2]sin List 1[5]âList 3[1]â”
List 2[1]sin List 1[5]+List 2[2]cos List 1[5]âList 3[2]â”
List 3[1]âList 2[1]â”
List 3[2]cos List 1[3]âList 2[2]â”
List 3[2]sin List 1[3]âList 2[3]â”
List 2[1]cos List 1[4]âList 2[2]sin List 1[4]âList 3[1]â”
List 2[1]sin List 1[4]+List 2[2]cos List 1[4]âList 3[2]â”
List 2[3]âList 3[3]â”
Goto 3â”
Lbl 2â”
365.256898326List 1[1]^1.5âPâ”
(TâList 1[6])Ă·PâMâ”
MâInt MâMâ”
If M<0:Then M+1âM:IfEndâ”
2ÏMâMâ”
MâUâ”
9âVâ”
While Abs (VâU)>1áŽ-12â”
UâVâ”
VâList 1[2]sin VâMâFâ”
1âList 1[2]cos VâGâ”
List 1[2]sin VâHâ”
List 1[2]cos VâIâ”
-FĂ·GâAâ”
-FĂ·(G+AHĂ·2)âBâ”
-FĂ·(G+AHĂ·2+BÂČIĂ·6)âCâ”
V+CâUâ”
WhileEndâ”
List 1[1](cos UâList 1[2])âList 2[1]â”
List 1[1]â(1âList 1[2]ÂČ)sin UâList 2[2]â”
â(List 2[1]ÂČ+List 2[2]ÂČ)âRž
List 2[1]cos List 1[5]âList 2[2]sin List 1[5]âList 3[1]â”
List 2[1]sin List 1[5]+List 2[2]cos List 1[5]âList 3[2]â”
List 3[1]âList 2[1]â”
List 3[2]cos List 1[3]âList 2[2]â”
List 3[2]sin List 1[3]âList 2[3]â”
List 2[1]cos List 1[4]âList 2[2]sin List 1[4]âList 3[1]â”
List 2[1]sin List 1[4]+List 2[2]cos List 1[4]âList 3[2]â”
List 2[3]âList 3[3]â”
Lbl 3â”
{1.000003,0.016701,0,0,103.154,2456294.541}âList 4â”
(ÏĂ·180)List 4[3]âList 4[3]â”
(ÏĂ·180)List 4[4]âList 4[4]â”
(ÏĂ·180)List 4[5]âList 4[5]â”
365.2563496155List 4[1]^1.5âPâ”
(TâList 4[6])Ă·PâMâ”
MâInt MâMâ”
If M<0:Then M+1âM:IfEndâ”
2ÏMâMâ”
MâUâ”
9âVâ”
While Abs (VâU)>1áŽ-12â”
UâVâ”
VâList 4[2]sin VâMâFâ”
1âList 4[2]cos VâGâ”
List 4[2]sin VâHâ”
List 4[2]cos VâIâ”
-FĂ·GâAâ”
-FĂ·(G+AHĂ·2)âBâ”
-FĂ·(G+AHĂ·2+BÂČIĂ·6)âCâ”
V+CâUâ”
WhileEndâ”
List 4[1](cos UâList 4[2])âList 2[1]â”
List 4[1]â(1âList 4[2]ÂČ)sin UâList 2[2]â”
â(List 2[1]ÂČ+List 2[2]ÂČ)âRž
List 2[1]cos List 4[5]âList 2[2]sin List 4[5]âList 5[1]â”
List 2[1]sin List 4[5]+List 2[2]cos List 4[5]âList 5[2]â”
List 5[1]âList 2[1]â”
List 5[2]cos List 4[3]âList 2[2]â”
List 5[2]sin List 4[3]âList 2[3]â”
List 2[1]cos List 4[4]âList 2[2]sin List 4[4]âList 5[1]â”
List 2[1]sin List 4[4]+List 2[2]cos List 4[4]âList 5[2]â”
List 2[3]âList 5[3]â”
List 3[1]âList 5[1]âList 6[1]â”
List 3[2]âList 5[2]âList 6[2]â”
List 3[3]âList 5[3]âList 6[3]â”
(Tâ2451545)Ă·36525âW
84381.448â46.84024Wâ5.9áŽ-4WÂČ+1.813áŽ-3W^3âΞâ”
ÏΞ÷648000âΞâ”
List 6[1]âXâ”
List 6[2]cos ΞâList 6[3]sin ΞâYâ”
List 6[2]sin Ξ+List 6[3]cos ΞâZâ”
â(XÂČ+YÂČ+ZÂČ)âRâ”
tanâ»Âč (YĂ·X)âAâ”
If X<0:Then A+ÏâA:IfEndâ”
If X>0 And Y<0:Then A+2ÏâA:IfEndâ”
(12Ă·Ï)AâAâ”
(180Ă·Ï)sinâ»Âč (ZĂ·R)âDâ”
Rž
Ξ
Až
Dž
Locate 1,1,"t(JD)"â”
Locate 1,2,"r(AU)"â”
Locate 1,3,"R(AU)"â”
Locate 1,4,"Δ(rad)"â”
Locate 1,5,"a(h)"â”
Locate 1,6,"ÎŽ(°)"â”
I found this project https://community.casiocalc.org/topic/7071-program-for-fx-9860gii-to-locate-comets-or-planets-in-the-sky/ (unfortunatly all of the google drive links are down) and I wanted to know how to turn the code show at the top of the forum into a .g1m file


BELOW IS THE CODE
"2014.0106, 12:00:00"âStr 1â”
{-4693.4,1.0000026666,61.7852,295.7508,345.5009,2456625.3147}âList 1â”
Exp(StrLeft(Str 1,4))âYâ”
Exp(StrMid(Str 1,6,2))âMâ”
Exp(StrMid(Str 1,8,2))âDâ”
Exp(StrMid(Str 1,12,2))+Exp(StrMid(Str 1,15,2))Ă·60+Exp(StrMid(Str 1,18,2))Ă·3600âTâ”
Int ((Mâ14)Ă·12)âAâ”
Int ((1461(Y+4800+A))Ă·4)âBâ”
Int ((367(Mâ2â12A))Ă·12)âCâ”
Int ((Y+4900+A)Ă·100)âEâ”
Int ((3E)Ă·4)âFâ”
B+CâF+Dâ32075.5âJâ”
J+TĂ·24âTž
If List 1[1]=0 Or List 1[2]â€0 Or List 1[2]=1:Then Stop:IfEndâ”
If List 1[1]>0 And List 1[2]>1:Then Stop:IfEndâ”
If List 1[1]<0 And List 1[2]<1:Then Stop:IfEndâ”
(ÏĂ·180)List 1[3]âList 1[3]â”
(ÏĂ·180)List 1[4]âList 1[4]â”
(ÏĂ·180)List 1[5]âList 1[5]â”
If List 1[1]>0:Then Goto 2:IfEndâ”
1.32712440018áŽ20âGâ”
1.49597870691áŽ11âOâ”
86400â(GĂ·(-OList 1[1])^3)âMâ”
M(TâList 1[6])âMâ”
0âUâ”
1âVâ”
While Abs (VâU)>1áŽ-12â”
UâVâ”
List 1[2]sinh VâVâMâFâ”
List 1[2]cosh Vâ1âGâ”
List 1[2]sinh VâHâ”
List 1[2]cosh VâIâ”
-FĂ·GâAâ”
-FĂ·(G+AHĂ·2)âBâ”
-FĂ·(G+AHĂ·2+BÂČIĂ·6)âCâ”
V+CâUâ”
WhileEndâ”
cosâ»Âč ((List 1[2]âcosh U)Ă·(List 1[2]cosh Uâ1))âFâ”
If U<0:Then 2ÏâFâF:IfEndâ”
List 1[1](1âList 1[2]cosh U)âRž
Rcos FâList 2[1]â”
Rsin FâList 2[2]â”
List 2[1]cos List 1[5]âList 2[2]sin List 1[5]âList 3[1]â”
List 2[1]sin List 1[5]+List 2[2]cos List 1[5]âList 3[2]â”
List 3[1]âList 2[1]â”
List 3[2]cos List 1[3]âList 2[2]â”
List 3[2]sin List 1[3]âList 2[3]â”
List 2[1]cos List 1[4]âList 2[2]sin List 1[4]âList 3[1]â”
List 2[1]sin List 1[4]+List 2[2]cos List 1[4]âList 3[2]â”
List 2[3]âList 3[3]â”
Goto 3â”
Lbl 2â”
365.256898326List 1[1]^1.5âPâ”
(TâList 1[6])Ă·PâMâ”
MâInt MâMâ”
If M<0:Then M+1âM:IfEndâ”
2ÏMâMâ”
MâUâ”
9âVâ”
While Abs (VâU)>1áŽ-12â”
UâVâ”
VâList 1[2]sin VâMâFâ”
1âList 1[2]cos VâGâ”
List 1[2]sin VâHâ”
List 1[2]cos VâIâ”
-FĂ·GâAâ”
-FĂ·(G+AHĂ·2)âBâ”
-FĂ·(G+AHĂ·2+BÂČIĂ·6)âCâ”
V+CâUâ”
WhileEndâ”
List 1[1](cos UâList 1[2])âList 2[1]â”
List 1[1]â(1âList 1[2]ÂČ)sin UâList 2[2]â”
â(List 2[1]ÂČ+List 2[2]ÂČ)âRž
List 2[1]cos List 1[5]âList 2[2]sin List 1[5]âList 3[1]â”
List 2[1]sin List 1[5]+List 2[2]cos List 1[5]âList 3[2]â”
List 3[1]âList 2[1]â”
List 3[2]cos List 1[3]âList 2[2]â”
List 3[2]sin List 1[3]âList 2[3]â”
List 2[1]cos List 1[4]âList 2[2]sin List 1[4]âList 3[1]â”
List 2[1]sin List 1[4]+List 2[2]cos List 1[4]âList 3[2]â”
List 2[3]âList 3[3]â”
Lbl 3â”
{1.000003,0.016701,0,0,103.154,2456294.541}âList 4â”
(ÏĂ·180)List 4[3]âList 4[3]â”
(ÏĂ·180)List 4[4]âList 4[4]â”
(ÏĂ·180)List 4[5]âList 4[5]â”
365.2563496155List 4[1]^1.5âPâ”
(TâList 4[6])Ă·PâMâ”
MâInt MâMâ”
If M<0:Then M+1âM:IfEndâ”
2ÏMâMâ”
MâUâ”
9âVâ”
While Abs (VâU)>1áŽ-12â”
UâVâ”
VâList 4[2]sin VâMâFâ”
1âList 4[2]cos VâGâ”
List 4[2]sin VâHâ”
List 4[2]cos VâIâ”
-FĂ·GâAâ”
-FĂ·(G+AHĂ·2)âBâ”
-FĂ·(G+AHĂ·2+BÂČIĂ·6)âCâ”
V+CâUâ”
WhileEndâ”
List 4[1](cos UâList 4[2])âList 2[1]â”
List 4[1]â(1âList 4[2]ÂČ)sin UâList 2[2]â”
â(List 2[1]ÂČ+List 2[2]ÂČ)âRž
List 2[1]cos List 4[5]âList 2[2]sin List 4[5]âList 5[1]â”
List 2[1]sin List 4[5]+List 2[2]cos List 4[5]âList 5[2]â”
List 5[1]âList 2[1]â”
List 5[2]cos List 4[3]âList 2[2]â”
List 5[2]sin List 4[3]âList 2[3]â”
List 2[1]cos List 4[4]âList 2[2]sin List 4[4]âList 5[1]â”
List 2[1]sin List 4[4]+List 2[2]cos List 4[4]âList 5[2]â”
List 2[3]âList 5[3]â”
List 3[1]âList 5[1]âList 6[1]â”
List 3[2]âList 5[2]âList 6[2]â”
List 3[3]âList 5[3]âList 6[3]â”
(Tâ2451545)Ă·36525âW
84381.448â46.84024Wâ5.9áŽ-4WÂČ+1.813áŽ-3W^3âΞâ”
ÏΞ÷648000âΞâ”
List 6[1]âXâ”
List 6[2]cos ΞâList 6[3]sin ΞâYâ”
List 6[2]sin Ξ+List 6[3]cos ΞâZâ”
â(XÂČ+YÂČ+ZÂČ)âRâ”
tanâ»Âč (YĂ·X)âAâ”
If X<0:Then A+ÏâA:IfEndâ”
If X>0 And Y<0:Then A+2ÏâA:IfEndâ”
(12Ă·Ï)AâAâ”
(180Ă·Ï)sinâ»Âč (ZĂ·R)âDâ”
Rž
Ξ
Až
Dž
Locate 1,1,"t(JD)"â”
Locate 1,2,"r(AU)"â”
Locate 1,3,"R(AU)"â”
Locate 1,4,"Δ(rad)"â”
Locate 1,5,"a(h)"â”
Locate 1,6,"ÎŽ(°)"â”
1 post
• Page 1 of 1
Who is online
Users browsing this forum: No registered users and 2 guests