Register

How to turn contents of a .txt file into a .g1m

Discuss anything related to calculators. For specific help on certain games/programs check the Released Projects subforum.
Junior Member
Posts: 1
Joined: Fri Oct 08, 2021 11:55 pm
Calculators: Casio fx-9750GII (SH4), Casio fx-9860GII

How to turn contents of a .txt file into a .g1m

Postby Stavros Purdie » Sat Oct 09, 2021 12:03 am

Hi everyone.
I found this project https://community.casiocalc.org/topic/7071-program-for-fx-9860gii-to-locate-comets-or-planets-in-the-sky/ (unfortunatly all of the google drive links are down) and I wanted to know how to turn the code show at the top of the forum into a .g1m file :eh: all my attempts have failed and I would like to know of a solution. :D

BELOW IS THE CODE

"2014.0106, 12:00:00"→Str 1↔
{-4693.4,1.0000026666,61.7852,295.7508,345.5009,2456625.3147}→List 1↔
Exp(StrLeft(Str 1,4))→Y↔
Exp(StrMid(Str 1,6,2))→M↔
Exp(StrMid(Str 1,8,2))→D↔
Exp(StrMid(Str 1,12,2))+Exp(StrMid(Str 1,15,2))Ă·60+Exp(StrMid(Str 1,18,2))Ă·3600→T↔
Int ((M−14)Ă·12)→A↔
Int ((1461(Y+4800+A))Ă·4)→B↔
Int ((367(M−2−12A))Ă·12)→C↔
Int ((Y+4900+A)Ă·100)→E↔
Int ((3E)Ă·4)→F↔
B+C−F+D−32075.5→J↔
J+TĂ·24→Tž
If List 1[1]=0 Or List 1[2]≀0 Or List 1[2]=1:Then Stop:IfEnd↔
If List 1[1]>0 And List 1[2]>1:Then Stop:IfEnd↔
If List 1[1]<0 And List 1[2]<1:Then Stop:IfEnd↔
(Ï€Ă·180)List 1[3]→List 1[3]↔
(Ï€Ă·180)List 1[4]→List 1[4]↔
(Ï€Ă·180)List 1[5]→List 1[5]↔
If List 1[1]>0:Then Goto 2:IfEnd↔
1.32712440018ᮇ20→G↔
1.49597870691ᮇ11→O↔
86400√(GĂ·(-OList 1[1])^3)→M↔
M(T−List 1[6])→M↔
0→U↔
1→V↔
While Abs (V−U)>1ᮇ-12↔
U→V↔
List 1[2]sinh V−V−M→F↔
List 1[2]cosh V−1→G↔
List 1[2]sinh V→H↔
List 1[2]cosh V→I↔
-FĂ·G→A↔
-FĂ·(G+AHĂ·2)→B↔
-FĂ·(G+AHĂ·2+BÂČIĂ·6)→C↔
V+C→U↔
WhileEnd↔
cos⁻Âč ((List 1[2]−cosh U)Ă·(List 1[2]cosh U−1))→F↔
If U<0:Then 2π−F→F:IfEnd↔
List 1[1](1−List 1[2]cosh U)→R¾
Rcos F→List 2[1]↔
Rsin F→List 2[2]↔
List 2[1]cos List 1[5]−List 2[2]sin List 1[5]→List 3[1]↔
List 2[1]sin List 1[5]+List 2[2]cos List 1[5]→List 3[2]↔
List 3[1]→List 2[1]↔
List 3[2]cos List 1[3]→List 2[2]↔
List 3[2]sin List 1[3]→List 2[3]↔
List 2[1]cos List 1[4]−List 2[2]sin List 1[4]→List 3[1]↔
List 2[1]sin List 1[4]+List 2[2]cos List 1[4]→List 3[2]↔
List 2[3]→List 3[3]↔
Goto 3↔
Lbl 2↔
365.256898326List 1[1]^1.5→P↔
(T−List 1[6])Ă·P→M↔
M−Int M→M↔
If M<0:Then M+1→M:IfEnd↔
2πM→M↔
M→U↔
9→V↔
While Abs (V−U)>1ᮇ-12↔
U→V↔
V−List 1[2]sin V−M→F↔
1−List 1[2]cos V→G↔
List 1[2]sin V→H↔
List 1[2]cos V→I↔
-FĂ·G→A↔
-FĂ·(G+AHĂ·2)→B↔
-FĂ·(G+AHĂ·2+BÂČIĂ·6)→C↔
V+C→U↔
WhileEnd↔
List 1[1](cos U−List 1[2])→List 2[1]↔
List 1[1]√(1−List 1[2]ÂČ)sin U→List 2[2]↔
√(List 2[1]ÂČ+List 2[2]ÂČ)→Rž
List 2[1]cos List 1[5]−List 2[2]sin List 1[5]→List 3[1]↔
List 2[1]sin List 1[5]+List 2[2]cos List 1[5]→List 3[2]↔
List 3[1]→List 2[1]↔
List 3[2]cos List 1[3]→List 2[2]↔
List 3[2]sin List 1[3]→List 2[3]↔
List 2[1]cos List 1[4]−List 2[2]sin List 1[4]→List 3[1]↔
List 2[1]sin List 1[4]+List 2[2]cos List 1[4]→List 3[2]↔
List 2[3]→List 3[3]↔
Lbl 3↔
{1.000003,0.016701,0,0,103.154,2456294.541}→List 4↔
(Ï€Ă·180)List 4[3]→List 4[3]↔
(Ï€Ă·180)List 4[4]→List 4[4]↔
(Ï€Ă·180)List 4[5]→List 4[5]↔
365.2563496155List 4[1]^1.5→P↔
(T−List 4[6])Ă·P→M↔
M−Int M→M↔
If M<0:Then M+1→M:IfEnd↔
2πM→M↔
M→U↔
9→V↔
While Abs (V−U)>1ᮇ-12↔
U→V↔
V−List 4[2]sin V−M→F↔
1−List 4[2]cos V→G↔
List 4[2]sin V→H↔
List 4[2]cos V→I↔
-FĂ·G→A↔
-FĂ·(G+AHĂ·2)→B↔
-FĂ·(G+AHĂ·2+BÂČIĂ·6)→C↔
V+C→U↔
WhileEnd↔
List 4[1](cos U−List 4[2])→List 2[1]↔
List 4[1]√(1−List 4[2]ÂČ)sin U→List 2[2]↔
√(List 2[1]ÂČ+List 2[2]ÂČ)→Rž
List 2[1]cos List 4[5]−List 2[2]sin List 4[5]→List 5[1]↔
List 2[1]sin List 4[5]+List 2[2]cos List 4[5]→List 5[2]↔
List 5[1]→List 2[1]↔
List 5[2]cos List 4[3]→List 2[2]↔
List 5[2]sin List 4[3]→List 2[3]↔
List 2[1]cos List 4[4]−List 2[2]sin List 4[4]→List 5[1]↔
List 2[1]sin List 4[4]+List 2[2]cos List 4[4]→List 5[2]↔
List 2[3]→List 5[3]↔
List 3[1]−List 5[1]→List 6[1]↔
List 3[2]−List 5[2]→List 6[2]↔
List 3[3]−List 5[3]→List 6[3]↔
(T−2451545)Ă·36525→W
84381.448−46.84024W−5.9ᮇ-4WÂČ+1.813ᮇ-3W^3→Ξ↔
Ï€ÎžĂ·648000→Ξ↔
List 6[1]→X↔
List 6[2]cos ξ−List 6[3]sin ξ→Y↔
List 6[2]sin Ξ+List 6[3]cos ξ→Z↔
√(XÂČ+YÂČ+ZÂČ)→R↔
tan⁻Âč (YĂ·X)→A↔
If X<0:Then A+π→A:IfEnd↔
If X>0 And Y<0:Then A+2π→A:IfEnd↔
(12Ă·Ï€)A→A↔
(180Ă·Ï€)sin⁻Âč (ZĂ·R)→D↔
Rž
Ξ
Až
Dž
Locate 1,1,"t(JD)"↔
Locate 1,2,"r(AU)"↔
Locate 1,3,"R(AU)"↔
Locate 1,4,"Δ(rad)"↔
Locate 1,5,"a(h)"↔
Locate 1,6,"ÎŽ(°)"↔

Return to General

Who is online

Users browsing this forum: No registered users and 2 guests